INDFL@W soluções

PORTUGUÊS

TRANSMISSOR DE NÍVEL UL-TRASSÔNICO PARA MEDIÇÃO DE NÍVEL EM RESERVATÓRIOS E VAZÃO EM CANAIS ABERTOS

BLIT – U TRANSMISSOR DE NÍVEL

MANUAL DE INSTRUÇÕES

Este manual deve ser lido antes da primeira utilização do transmissor de nível ultrassônico para medição de nível em reservatórios e vazão em canais abertos. Neste documento estão todas as informações necessárias para a inicialização e operação do equipamento. Informações adicionais devem ser solicitadas ao fabricante do equipamento.

ÍNDICE

Dimensões externas
BLIT-U-C
BLIT-U-L
BLIT-U-L – CONEXÃO 1POL
BLIT-U-T
Montagem9
Diagrama elétrico10
Diagrama elétrico BLIT-U-C10
Conexão da alimentação do módulo eletrônico13
Conexão corrente de <i>loop</i>
Conexão RS48513
Diagrama elétrico BLIT-U-L E BLIT-U-T14
Conexão da alimentação do módulo eletrônico15
Conexão de sinal de saída PNP15
Conexão corrente de <i>loop</i> 16
Conexão RS48516
Diagrama elétrico BLIT-U-L E BLIT-U-T COM RELE DE COMANDO17
Parametrização18
Parametrização via RS48518
Parametrização via indicador local19
Nível de operação19
Nível de parametrização
TABELA DE PARÂMETROS 25
Níveis de acesso
Acesso ao nível de parametrização27
Reiniciar comunicação – BLIT-U-C

DIMENSÕES EXTERNAS

Abaixo são apresentadas as dimensões externas em milímetros do transmissor ultrassônico, separando-os por modelo.

Figura 1: BLIT-U-C-R

BLIT-U-L – CONEXÃO 1POL

Figura 3: BLIT-U-L-R – 1POL

BLIT-U-T

Figura 4: BLIT-U-T-R Conversor vista frontal

Figura 5: BLIT-U-T-R Conversor vista lateral

Figura 6: BLIT-U-T-R transmissor

MONTAGEM

A imagem abaixo é um exemplo de montagem em calha *Parshall* utilizando um suporte para módulo ultrassônico (não incluso no equipamento).

DIAGRAMA ELÉTRICO

A seguir são apresentados os diagramas elétricos para ligação dos modelos BLIT-U-C, BLIT-U-L e BLIT-U-T

DIAGRAMA ELÉTRICO BLIT-U-C

Figura 7: Descrição conexões BLIT-U-C

BORNE DESCRIÇÃO

- 1 Conexão positivo do telêmetro.
- 2 Conexão negativo do telêmetro.
- **3** Conexão do sinal de saída do telêmetro.
- 4 Terra borne conectado ao invólucro.
- 5 Comum do sinal de comunicação *modbus*
- 6 Canal B da comunicação RS485/MODBUS
- 7 Canal A da comunicação RS485/MODBUS
- 8 Negativo do *Loop* de corrente saída ATIVA
- 9 Positivo do *Loop* de corrente saída ATIVA
- **10** Negativo da fonte de alimentação.
- **11** Positivo da fonte de alimentação +24V

Figura 8: Continuação descrição conexões BLIT-U-L

- BORNEDESCRIÇÃO12Comum do relé de sinal C
- 13 Normalmente fechado do relé de sinal - NF.
- Normalmente aberto do relé de sinal NA 14

Figura 9: descrição elementos módulo BLIT-U-C

ELEMENTO	DESCRIÇÃO
J1	Conexão do telêmetro.
J2	Conexão da alimentação e dos sinais de saída.
J3	Conexão relé de alarme.
J4	Porta de inspeção/programação de fábrica.
D9	LED indicativo do estado do relé.
D10	LED indicativo do estado de operação do módulo.
TX	TX led que indica a transmissão de pacotes no canal modbus
RX	RX led que indica a recepção de pacotes no canal modbus
ACT	Botão para reiniciar a comunicação modbus para os valores de fábrica
K1	Relé de sinal, 1A 120 V ac / 1ª 24Vdc

CONEXÃO DA ALIMENTAÇÃO DO MÓDULO ELETRÔNICO

A alimentação deve ser realizada pelos bornes 10[-] e 11[+], a entrada é protegida contra inversão acidental. A fonte deve ter tensão de 24V, capaz de fornecer no mínimo 100mA de corrente contínua (2,4 W), recomenda-se a utilização de um fusível em série com o positivo do módulo eletrônico, considere a utilização de protetores de surto. Utilize sempre fontes de alimentação de alta qualidade.

CONEXÃO CORRENTE DE LOOP

O sinal de corrente de loop (4 - 20mA) deve ser conectado ao CLP de maneira ativa, nota-se que **não é necessário a utilização de fonte em série**, pois o sinal de **saída do módulo eletrônico é ativo**. A resistência interna do CLP deve ser inferior a 1k Ω . A conexão de fonte de alimentação em série com o sinal de saída do módulo causará danos imediatos ao circuito analógico.

CONEXÃO RS485

A comunicação *RS485* do módulo eletrônico é feita pelos bornes 5/6/7, a comunicação é do tipo *half-duplex*, a codificação é realizada com base na normativa IEEE-754.

Atenção: a conexão de fonte de alimentação, mesmo que por curtos períodos, nos bornes A e B, ocasionará instantaneamente dano irreversível ao circuito de comunicação serial.

DIAGRAMA ELÉTRICO BLIT-U-L E BLIT-U-T

BORNE DESCRIÇÃO

- 1 Positivo da fonte de alimentação de corrente contínua (24V)
- 2 Negativo da fonte de alimentação
- 3 Sinal de saída PNP proveniente do medidor de vazão PULSO
- 4 Positivo do sinal de saída de corrente de loop (4-20mA) ATIVO
- 5 Negativo (retorno) do sinal de saída de corrente de loop (4-20mA)
- 6 Canal A da comunicação RS485/MODBUS
- 7 Canal B da comunicação RS485/MODBUS
- 8 Negativo da comunicação RS485/MODBUS

CONEXÃO DA ALIMENTAÇÃO DO MÓDULO ELETRÔNICO

A alimentação deve ser realizada pelos bornes 1 e 2 conforme a imagem acima. A fonte deve ter tensão de 24V, capaz de fornecer no mínimo 200mA de corrente contínua.

CONEXÃO DE SINAL DE SAÍDA PNP

O sinal de saída de PNP deve ser conectado ao CLP / contador de pulso conforme a imagem acima, nota-se que não é necessário a utilização de fonte externa, pois o sinal de saída do módulo eletrônico é ativo. A largura do pulso é proporcional a distância medida pelo sensor ultrassônico, variando de 300 até 10000 us, este sinal é enviado a uma taxa de 0,58 Hz. O fator de conversão é de 10 μ s.cm⁻¹.

O sinal de corrente de loop (4 - 20mA) deve ser conectado ao CLP de maneira ativa, nota-se que **não é necessário a utilização de fonte em série**, pois o sinal de **saída do módulo eletrônico é ativo**. A resistência interna do CLP deve ser inferior a 1k Ω . A conexão de fonte de alimentação em série com o sinal de saída do módulo causará danos imediatos ao circuito analógico.

CONEXÃO RS485

A comunicação *RS485* do módulo eletrônico é feita pelos bornes 5/6/7, a comunicação é do tipo *half-duplex*, a codificação é realizada com base na normativa IEEE-754.

Atenção: a conexão de fonte de alimentação, mesmo que por curtos períodos, nos bornes A e B, ocasionará **instantaneamente** dano irreversível ao circuito de comunicação serial.

DIAGRAMA ELÉTRICO BLIT-U-L E BLIT-U-T COM RELE DE COMANDO

BORNE	DESCRIÇÃO
1	Terminal [1] da alimentação ¹
2	Terminal [2] da alimentação ¹
3	Sinal de saída PNP proveniente do medidor de vazão – PULSO
4	Positivo do sinal de saída de corrente de loop (4-20mA) – ATIVO
5	Negativo (retorno) do sinal de saída de corrente de loop (4-20mA)
6	Canal A da comunicação RS485/MODBUS
7	Canal B da comunicação RS485/MODBUS
8	Normalmente fechado do rele de comando ²
9	Comum do rele de comando ²
10	Normalmente aberto do rele de comando ²

- 1: Verificar na régua de borne e na plaqueta do equipamento a tensão de alimentação.
- 2: Não exceder a corrente limite de 2 A.

PARAMETRIZAÇÃO

Abaixo são descritas as formas de parametrização de acordo com o modelo específico.

PARAMETRIZAÇÃO VIA RS485

A parametrização do módulo BLIT-U-C é realizada exclusivamente pelo canal *modbus*. Todos os registros de configuração são acessados e alterados pela comunicação *modbus*, pode-se para este caso utilizar **qualquer** software *modbus/RS485* de prateleira, inclusive disponibilizamos uma versão gratuita que deve ser solicitada formalmente por e-mail (**ecommerce@indflow.com.br**).

A configuração do canal de comunicação deve possuir as seguintes características:

Baud rate: Configurável nas velocidades 9600, 19200, 38400, 57600 e 115200 bps

Databits: 8

Stopbits: 1

Parity: sem paridade.

Funções suportadas:

0x03 Leitura registradores retentivos

0x06 Escrita registrador retentivo

0x10 Escrita de múltiplos registradores retentivos.

PARAMETRIZAÇÃO VIA INDICADOR LOCAL

Abaixo são apresentadas as árvores de navegação para devida operação e configuração dos modelos com indicador local.

NÍVEL DE OPERAÇÃO

TELA	APLICAÇÃO				$\overline{\mathbf{V}}$	
	Tanque cilíndrico com fundo reto	1250.00 352.00	mЗ mm	Altera a unidade de trabalho		Avança para a tela coluna de ar e de fluido
	Tanque retangular vertical com fundo reto	1250.00 352.00	m3 mm	Altera a unidade de trabalho		Avança para a tela coluna de ar e de fluido
	Tanque retangular vertical com calha	1250.00 352.00	m3 mm	Altera a unidade de trabalho		Avança para a tela coluna de ar e de fluido
01	Tanque esférico	1250.00 352.00	mЗ mm	Altera a unidade de trabalho		Avança para a tela coluna de ar e de fluido
	Calha Parshall	127.00 128.00	m3∕h m3	Altera a unidade de trabalho	Zerar totalizador parcial	Avança para a tela coluna de ar e de fluido
	Vertedouro degrau no fundo	127.00 128.00	m3∕h m3	Altera a unidade de trabalho	Zerar totalizador parcial	Avança para a tela coluna de ar e de fluido
	Vertedouro Bazin	127.00 128.00	m3∕h m3	Altera a unidade de trabalho	Zerar totalizador parcial	Avança para a tela coluna de ar e de fluido

Vertedouro trapezoidal	127.00 m3/h 128.00 m3	Altera a unidade de trabalho	Zerar totalizador parcial		Avança para a tela coluna de ar e de fluido
Vertedouro trapezoidal (4:1)	127.00 m3/h 128.00 m3	Altera a unidade de trabalho	Zerar totalizador parcial		Avança para a tela coluna de ar e de fluido
Vertedouro triangular	127.00 m3/h 128.00 m3	Altera a unidade de trabalho	Zerar totalizador parcial		Avança para a tela coluna de ar e de fluido
Vertedouro Thomson	127.00 m3/h 128.00 m3	Altera a unidade de trabalho	Zerar totalizador parcial		Avança para a tela coluna de ar e de fluido
Vertedouro circular	127.00 m3/h 128.00 m3	Altera a unidade de trabalho	Zerar totalizador parcial		Avança para a tela coluna de ar e de fluido
Selecionar aplicação	SELECIONAR APLICACAO				Avança para a tela coluna de ar e de fluido
Distância medida e calculada	DIS. 300.0 mm COL. 3400.0 mm	Altera a unidade de trabalho			Avança para a tela resolução primária ou to- talizador eterno
Totalizador eterno (apenas aplicações de vazão)	TOTAL ETERNO 857.1 m3				Avança para a tela resolução primária
Alterar resolução primária	RESOLUCAO PRI. 2	Confirma a mu- dança	Decrementa a resolução primá- ria	Incrementa a re- solução primária	Avança para a tela resolução secundária
Alterar resolução secundária	RESOLUCAO SEC. 2	Confirma a mu- dança	Decrementa a resolução secun- dária	Incrementa a re- solução secundá- ria	Avança para a tela informa- ções de contato

Volta para a tela inicial

Volta para a tela de inicial

NÍVEL DE PARAMETRIZAÇÃO

TELA	APLICAÇÃO			$\overline{\mathbf{v}}$		
10	Senha de acesso	PARAMETRIZAÇÃO SENHA: 2000	Confirma	Incrementar se- nha	Decrementar se- nha	Retorna para a tela inicial
20	Fator de ajuste	FATOR K 1.00	Confirma a mu- dança	Decrementa o fator de ajustes	Incrementa o fator de ajuste	Avança para a tela resolução secundária
21	Distância máxima de medição	DISTANCIA MAXIMA 10000 mm	Confirma a mu- dança	Decrementa a distância má- xima	Incrementa a dis- tância mínima	Avança para a tela de distância mínima
22	Distância mínima de medição	DISTANCIA MINIMA 300 mm	Confirma a mu- dança	Decrementa a distância mí- nima	Incrementa a dis- tância mínima	Avança para a tela de aplica- ção
23	Seleção da aplicação	APLICACAO Ø TAN CIL FUN RETO	Confirma a apli- cação	Decrementa a aplicação	Incrementa a apli- cação	Avança para a tela de parâme- tro 0
24	Parâmetro [0]	APLICACAO PØ 300.00 mm	Confirma o pa- râmetro [0]	Decrementa o parâmetro	Incrementa o pa- râmetro	Avança para a tela de parâme- tro 1
25	Parâmetro [1]	APLICACAO P1 300.00 mm	Confirma o pa- râmetro [1]	Decrementa o parâmetro	Incrementa o pa- râmetro	Avança para a tela de parâme- tro 2
26	Parâmetro [2]	APLICACAO P2 0.00 NA	Confirma o pa- râmetro [2]	Decrementa o parâmetro	Incrementa o pa- râmetro	Avança para a tela de parâme- tro 3

27	Parâmetro [3]	APLICACAO P3 0.00 NA	Confirma o pa- râmetro [3]	Decrementa o parâmetro	Incrementa o pa- râmetro	Avança para a tela de parâme- tro 4
28	Parâmetro [4]	APLICACAO P4 0.00 NA	Confirma o pa- râmetro [4]	Decrementa o parâmetro	Incrementa o pa- râmetro	Avança para a tela de parâme- tro 5
29	Parâmetro [5]	APLICACAO P5 0.00 NA	Confirma o pa- râmetro [5]	Decrementa o parâmetro	Incrementa o pa- râmetro	Avança para a tela de coluna em 04mA
20	Valor da saída de corrente em 04mA (nível)	COLUNA EM 04mA 300.00 mm	Confirma a co- luna em 04mA	Decrementa o valor	Incrementa o va- lor	Avança para a tela de coluna em 20mA
30	Valor da saída de corrente em 04mA (vazão)	COLUNA EM 04mA 0.00 m3/h	Confirma a va- zão em 04mA	Decrementa o valor	Incrementa o va- lor	Avança para a tela de coluna em 20mA
31	Valor da saída de corrente em 20mA (nível)	COLUNA EM 20mA 10000.00 mm	Confirma a co- luna em 20mA	Decrementa o valor	Incrementa o va- lor	Avança para a tela modo de resposta
	Valor da saída de corrente em 20mA (vazão)	COLUNA EM 20mA 20.00 m3/h	Confirma a va- zão em 20mA	Decrementa o valor	Incrementa o va- lor	Avança para a tela função do rele
32	Função do rele de saída	FUNCAO DO RELE LIMITE BAIXO	Confirma e avança retorna para a tela 1	Altera a função do rele de saída	Altera a função do rele de saída	Avança para a tela limite baixo
33	Valor do limite baixo	LIMITE BAIXO 0.00 cm	Confirma o va- lor do limite baixo	Decrementa o valor	Incrementa o va- lor	Avança para a tela de limite baixo
34	Valor do limite alto	LIMITE ALTO 3700.00 cm	Confirma o li- mite alto	Decrementa o valor	Incrementa o va- lor	Avança para a tela modo de resposta

35	Modo de resposta da sonda	MODO RESPOSTA AMORTECIDO	Confirma o modo de res- posta	Altera o modo de resposta	Altera o modo de resposta	Avança para a tela <i>dump</i>
36	Medições consideradas na média móvel	DUMP AMOSTRAS: 32	Confirma o dump	Decrementa o número de itens na média móvel	Incrementa o nú- mero de itens na média móvel	Avança para a tela de filtro de medidas
37	Medições idênticas para liberar o resultado	FILTRO MEDIDAS: 2	Confirma o filtro de medidas	Incrementa o fil- tro de medidas	Decrementa o fil- tro de medidas	Avança para a tela de endereço serial
38	Endereço do medidor na rede <i>ModBus</i>	ENDERECO SERIAL	Confirma o en- dereço e reinicia a comunicação	Decrementa o endereço	Incrementa o en- dereço	Avança para a tela de veloci- dade de comu- nicação
39	Velocidade de comunicação da rede <i>ModBus</i>	BAUD RATE 115200	Confirma a velo- cidade e reinicia a comunicação	Decrementa a velocidade	Incrementa a ve- locidade	Avança para a tela de Offset em 04mA
40	Ajuste da saída de corrente em 04mA	OFFSET EM 04mA 9370 Bits	Confirma o offset em 04mA	Decrementa o offset em 04mA	Incrementa o offset em 04mA	Avança para a tela de <i>offset</i> em 20mA
41	Ajuste da saída de corrente em 20mA	OFFSET EM 20mA 52150 Bits	Confirma o offset em 20mA	Decrementa o offset em 20mA	Incrementa o offset em 20mA	Retorna para a tela inicial

TABELA DE PARÂMETROS

Abaixo é apresenta a tabela de parâmetros com uma breve descrição, para alteração dos parâmetros via indicador local deve-se utilizar como referência o capítulo acima. Cada linha tabela abaixo representa uma aplicação e cada coluna um parâmetro da respectiva aplicação.

Tabela 1: Aplicações e respectivos parâmetros

#	Descrição	Distância má- xima [mm]	Parâmetro [0]	Parâmetro [1]	Parâmetro [2]	Parâmetro [3]	Parâmetro [4]	Parâmetro [5]
0	Tanque cilíndrico ver- tical com fundo reto	Altura do tanque [300 - 65535]	Diâmetro do tan- que [300 – 65535]	Reservado	Reservado	Reservado	Reservado	Reservado
1	Tanque cilíndrico ver- tical com fundo cô- nico	Altura do tanque [300 – 65535]	Diâmetro do tan- que [300 – 65535]	Reservado	Altura cone [1 – 65535]	Diâmetro cone in- ferior [1 – 65535]	Reservado	Reservado
2	Tanque retangular vertical fundo reto	Altura do tanque [300 – 65535]	Largura do tanque [300 – 65535]	Comp. do tanque [1 – 65535]	Reservado	Reservado	Reservado	Reservado
3	Tanque retangular vertical com calha	Altura do tanque [300 – 65535]	Largura do tanque [300 – 65535]	Comp. do tanque [1 – 65535]	Altura da calha [1 – 65535]	Lar. da calha (in- ferior) [1 – 65535]	Comp. calha(infe- rior) [1 – 65535]	Reservado
4	Tanque esférico	Altura do tanque [300 – 65535]	Diâmetro do tan- que [300 – 65535]	Reservado	Reservado	Reservado	Reservado	Reservado
5	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado
6	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado
7	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado
8	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado
9	Calha Parshall	Distância máxima [300 – 65535]	Reservado	Garganta (W =1", 2",, N")	Reservado	Reservado	Reservado	Distância Q=0 [300 – 10000]
10	Vertedouro degrau no fundo	Distância máxima [300 – 65535]	Reservado	Largura do canal [300 – 15000]	Reservado	Reservado	Reservado	Distância Q=0 [300 – 10000]

11	Vetedouro BAZIN (re- tangular restringido)	Distância máxima [300 – 65535]	Altura restrição [150 – 800]	Largura do canal [150 – 3000]	Reservado	Reservado	Reservado	Distância Q=0 [300 – 10000]
12	Vertedouro trapezoi- dal	Distância máxima [300 – 65535]	Ângulo ext. trapé- zio [10 – 100º]	Lar. Inf. trapézio [500 – 15000]	Reservado	Reservado	Reservado	Distância Q=0 [300 – 10000]
13	Vertedouro trapezoi- dal (4:1)	Distância máxima [300 – 65535]	Reservado	Lar. Inf. trapézio [300 – 10000]	Reservado	Reservado	Reservado	Distância Q=0 [300 – 10000]
14	Vertedouro triangular	Distância máxima [300 – 65535]	Reservado	Ângulo int. triân- gulo [20 – 100º]	Reservado	Reservado	Reservado	Distância Q=0 [300 – 10000]
15	Vertedouro THOM- SON	Distância máxima [300 – 65535]	Reservado	Reservado	Reservado	Reservado	Reservado	Distância Q=0 [300 – 10000]
16	Vertedouro circular	Distância máxima [300 – 65535]	Diâmetro do cír- culo [20 – 2000]	Reservado	Reservado	Reservado	Reservado	Distância Q=0 [300 – 10000]
17	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado
18	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado
19	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado	Reservado

NÍVEIS DE ACESSO

São dois os níveis de acesso: operação e parametrização. No nível de operação o usuário poderá transitar pelas grandezas medidas e calculadas. No nível de parametrização o programador configurará os parâmetros necessários para a aplicação desejada, também podem ser realizados ajustes nas saídas digitais e analógicas.

ACESSO AO NÍVEL DE PARAMETRIZAÇÃO

Para acessar o nível de parametrização o programador deve acessar a tela inicial [01] e pressionar o botão de incremento e na sequência o de decremento, isto o levará a tela de senha de acesso [10], a **senha de acesso** padrão de fábrica é o número **2038**.

REINICIAR COMUNICAÇÃO – BLIT-U-C

O botão **ACT1** é responsável pelo reinicio da comunicação serial, quando é pressionado a comunicação é alterada para a seguinte parametrização. Ao pressionar o botão deve-se verificar que o LED PBS(D10) piscará uma única vez em tom vermelho.

Baud rate: 115200 bps

Databits: 8

Stopbits: 1

Parity: sem paridade.

Serial id: 1

Figura 10: Botão reiniciar comunicação modbus